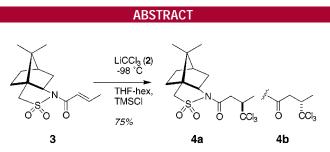
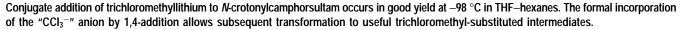
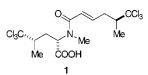
Synthetic Studies of Trichloroleucine Marine Natural Products. Michael Addition of LiCCl₃ to *N*-Crotonylcamphor Sultam

LETTERS 1999 Vol. 1, No. 13 2165–2167


ORGANIC


Sarah E. Brantley and Tadeusz F. Molinski*

Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616


tfmolinski@ucdavis.edu

Received November 17, 1999

Trichloroleucine natural products, such as (-)-herbacic acid (1),¹ are found in the marine sponges *Dysidea herbacea* and *Dysidea chlorea*² Both the L- or D-amino acids have been encountered.

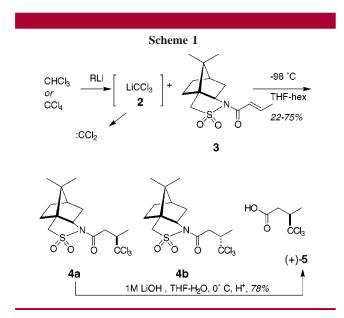
Recent evidence suggests^{1,3} that the CCl₃ groups of **1** may be derived by direct chlorination of leucine and parallel degradation of the resultant (2S,4S)-5,5,5-trichloroleucine to (S)-4,4,4-trichlorobutanoic acid (or its equivalent) and ketide homologation. To investigate this hypothesis we required a synthesis of **1** and a variety of putative non-chlorinated precursors by direct introduction of nucleophilic CCl_3^- . The CCl_3 group is easily dechlorinated and serves as a convenient surrogate for CH_3 , CD_3 , or CT_3 in labeling studies.

Conjugate additions of organometallic reagents to α , β unsaturated carbonyl compounds are valuable C–C bondforming reactions.⁴ 1,4-Addition reactions of trichloro-

⁽¹⁾ MacMillan, J. B.; Molinski, T. F., J. Nat. Prod., in press.

⁽²⁾ Fu, X.; Ferreira, M. L. G.; Schmitz, F. J.; Kelly-Borges, M. J. Nat. Prod. **1998**, *61*, 1226–1231.

^{(3) (}a) Sitachitta, N.; Rossi, J.; Roberts, M. A.; Gerwick, W. H.; Fletcher, M. D.; Willis, C. L. J. Am. Chem. Soc. **1998**, *120*, 7131–7132. (b) Hartung, J. Angew. Chem., Int. Ed. **1999**, *38*, 1209–1211.


⁽⁴⁾ Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis; Pergamon: Oxford, 1992; p 373.

^{(5) (}a) 2-Cyclohexenone with 2 and Al(2,6-di-PhC₆H₃O)₃: 1,4-adduct, 60%; Maruoka, K.; Shimada, I.; Imoto, H.; Yamamoto, H. Synlett 1994, 519-520. (b) 2-Cyclopentenone with 2: 1,4-adduct (23%) accompanied by 1,2-adduct (34%); Krebs, J.; Weber, A.; Neuenschwander, M. Chimia **1981**, *35*(2), 55–57. **2** with enoylphosphoranes, 80–90%, (c) Cooke, M. P., Jr.; Jaw, J.-Y. *J. Org. Chem.* **1993**, *58*, 267–269. Addition of stabilized CCl3⁻ generated in other ways to Michael acceptors are also reported. The yields, with one exception, are poor due to strong competition from dichlorocyclopropanation. Phase-transfer catalytic generation of CCl_3^- and addition to crotonates, 3–19%: (d) Dehmlow, E. V.; WIlkenloh, J. Chem. Ber. 1990, 123, 583-587. (e) Dehmlow, E. V. Liebigs Ann. Chem. 1972, 758, 148-154. Addition to acrylate ester, acrylonitrile, vinyl sulfone, ca. 10%: (f) Nerdel, F.; Brodowski, W.; Buddras, J.; Fligge, M.; Weyerstahl, P.; Ulm, K.; Finger, C.; Klamann, D. Chem. Ber. 1968, 101, 1407-1413. Addition to menthyloxy 2(5H)-furanone, 14% ((g) Kang, F.-A.; Yu, Z.-Q.; Yin, H.-Y.; Yin, C.-L. Tetrahedron: Asymmetry 1997, 8, 3591-3596) and electrochemical base-generated CCl3⁻ with acrylates, acryonitriles, 18-87% ((h) Shono, T.; Ishifune, M.; Ishige, O.; Uyama, H.; Kashimura, S. Tetrahedron Lett. **1990**, 49, 7181-7184).

methyllithium (LiCCl₃, **2**) or other equivalents of the CCl_3^- anion to enones, enoates, and acrylonitriles have been reported, but yields are generally low.⁵

The reason lies partly in the low stability of **2** which rapidly undergoes α -elimination of LiCl to give electrophilic dichlorocarbene above ~ -80 °C.⁶ No examples of additions of **2** to enoyl amides or enoyl sulfonamides are known. We conjectured that the relatively "soft" nucleophile **2** might favor conjugate addition to less-reactive Michael acceptors at low temperatures and were delighted to find that this was, indeed, the case. We now describe that conjugate addition of **2** to an enoyl sulfonamide, (1*S*)-*N*-crotonyl-2,10-camphor sultam (–)-**3**, occurs in good yield in the presence of TMSCI.

Initial attempts to induce 1,4-addition of 2 to (-)-3⁷ (Scheme 1) were met with partial success. Generation of 2

by addition of a slight excess of *n*-BuLi to $CHCl_3$ in THF at -78 °C in the presence of (–)-**3** gave only starting material and a complex mixture of products. When the reaction was repeated at -98 °C, the epimeric conjugate addition products **4a** and **4b** (62:38) were obtained in 27% yield after chromatography (Table 1, entry 1). Separation of the major

Table 1.	Conjugate Ad	ditions of LiCCl ₃ to $(-)$ - 3 ^{<i>a</i>}
----------	--------------	---

entry	CHCl ₃ , equiv	<i>n</i> -BuLi, equiv	additive (1.0 equiv)	total yield 4a + 4b, %	4a:4b
1 ^b	1.2	1.1		27%	62:38
2^{b}	1.2	1.1^{e}	MgCl ₂	20%	70:30
3^{c}	5.0	5.0		< 5%	
4	5.0	5.0		22%	55:45
5	5.0	5.0	$ZnCl_2$	NR	
6	20.0	20.0		25%	
7	5.0	5.0	TMSCl	75% (87%) ^d	55:45
8	5.0	5.0	TiCl ₄ -TMSCl	NR	

^{*a*} CHCl₃ was added to *n*-BuLi or *sec*-BuLi in THF at -98 °C. ^{*b*} Generation of **2** in the presence of (-)-**3**. ^{*c*} Inverse addition of CHCl₃ and *n*-BuLi. ^{*d*} 87% based on consumed starting material. ^{*e*} *sec*-BuLi. isomer **4a** from **4b** was achieved by repeated fractional crystallization from *n*-hexane—the less soluble isomer (–)-**4a** was obtained as colorless crystals, mp 134–5 °C, $[\alpha]_D$ –41.0° (CHCl₃).⁸

The assignment of configuration of the newly created stereogenic center followed from saponification of (-)-4a (LiOH, aqueous THF) and conversion to the known acid (+)-5 (78%).⁹ Diastereoselectivity increased slightly (70:30 dr,¹⁰ entry 2) with 1.1 equiv of *sec*-BuLi in the presence of MgCl₂ (1.0 equiv), although the yield was still low (20%). A dramatic improvement in yield of 4a:4b was obtained with use of excess 2 (5 equiv, entry 7) and addition of TMSCl (75% yield, 87% based on consumed sm (55:45 dr).

TMSCl appears to activate (–)-3 toward conjugate addition,¹¹ but the presence of transition metals (TiCl₄, ZnCl₂) gave no reaction, possibly due to catalytic decomposition of **2** to CCl₂.^{6a}

The relatively "soft" trichloromethyllithium appears to be well suited for conjugate addition to enoyl sulfonamides. Activation of (-)-**3** with TMSCl toward conjugate addition supports a nucleophilic mechanism, in contrast to earlier claims that LiCCl₃ is electrophilic.^{6b}

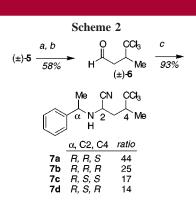
The CCl₃ group is relatively robust and tolerates further reaction (Scheme 2). Esterification of (\pm) -5 (MeOH, catalytic

(8) CHCl₃ (248 mg, 2.08 mmol, 5 equiv) was added to a mixture of 0.5 mL of THF and n-BuLi (2.13 M in hexanes, 2.00 mmol, 5 equiv) at -98 °C, without allowing the temperature to rise above -80 °C. A solution of 3 (0.1140 g 0.40 mmol, 1 equiv) in THF (1.0 mL) was introduced, slowly, followed by TMSCl (0.223 mg, 2.05 mmol) after 50 min. The temperature was raised to -78 °C and the mixture quenched with aqueous NH₄Cl after a further 90 min. Workup (ether) and silica chromatography (1:9 n-hexane/ CH₂Cl₂) gave 4a:4b (75%, 87% based on consumed starting material). Six crystallizations from n-hexane gave pure 4a: C15H22Cl3NO3S; mp 134-135 °C; $[\alpha]_D$ -41.0° (c = 1.14, CHCl₃); IR (NaCl) v 1693 cm⁻¹; ¹H NMR $(C_6D_6) \delta 3.77 \text{ (dd, 1H, } J = 16.4, 1.8 \text{ Hz}), 3.50 \text{ (m, 2H)}, 3.29 \text{ (dd, 1H, } J = 16.4, 1.8 \text{ Hz})$ 16.4, 9.7 Hz), 2.74, 2.72 (ABq, 2H, *J* = 13.8 Hz), 2.00 (ddd, 1H, *J* = 12.0, 8, 0, 3.6 Hz), 1.87 (dd, 1H, J = 14.0, 8.0 Hz), 1.30 (bd, 3H, J = 6.5 Hz), 1.28 (m, 2H), 1.10 (m, 1H), 1.01 (s, 3H), 0.75 (m, 1H), 0.57 (ddd, 1H, J = 12.0, 9.4, 3.1 Hz), 0.41, (s, 3H); ¹³C NMR (C₆D₆) δ 169.5 (C=O), 105.6 (CCl₃), 65.7 (d), 52.9 (t), 52.4 (d), 48.7 (s), 48.0 (s), 45.3 (d), 40.2 (t), 39.2 (t), 32.9 (t), 26.8 (t), 21.4 (q), 20.0 (q), 17.4 (q); HREIMS, found m/z 401.0357 (M⁺); C₁₅H₂₂Cl₃NO₃S requires 401.0386. Compounds 4a:4b were separable by HPLC (Dynamax silica, 10 × 250 mm, 3 mL/min, 1:4 EA/ hexane). ds was monitored by integration of ¹H NMR (300 MHz, C₆D₆) gem dimethyl signals of 4a (δ 0.42, s 3H; 1.01, s, 3H) and 4b (δ 0.39, s, 3H; 0.96, s, 3H).

(9) De Laszlo, S. E.; Willard, P. G. J. Am. Chem. Soc. **1985**, 107, 199–203. We also prepared (\pm) -**5** by the method described above (free-radical conjugate addition of BrCCl₃ to crotonic acid, Zn reduction) and resolved (+)-**5** and (-)-**5** by repeated recrystallization of the corresponding (-)-cinchonidine salts (aqueous MeOH).

(10) This is consistent with addition of **2** to the metal-chelate-preorganized *s-cis* conformation of **3**: cf. Oppolzer, W.; Kingma, A. J.; Poli, G. *Tetrahedron* **1989**, *45*, 479–488.

(11) TMSCl is well known to accelerate conjugate addition of cuprates to enones and enoyl derivatives, e.g., Lindstedt, E.-L.; Nilsson, M.; Olsson, T. J. Organomet. Chem. **1987**, 334, 255–261 and other citations in ref 4.


(12) Inaba, T.; Fujita, M.; Ogura, K. J. Org. Chem. **1991**, 56, 1274-1279.

(13) The configuration of 7a was verified on the basis of Inaba's work¹² and comparative spectroscopic analysis.

(14) (a) Lee, G. M.; Molinski, T. F. *Tetrahedron Lett.* 1992, 33, 7671–7674.
(b) Kazlauskas, R.; Murphy, P. T.; Wells, R. J. *Tetrahedron Lett.* 1978, 4945–4948.

⁽⁶⁾ Köbrich, G. Angew. Chem., Int. Ed. **1972**, 11, 473–485 and references therein. (b) Miller, W. T., Jr.; Whalen, D. M. J. Am. Chem. Soc. **1964**, 86, 2089–2091.

⁽⁷⁾ Prepared by *N*-acylation of (-)-(1*S*)-camphor-2,10-sultam with crotonyl chloride (NaH, toluene, 0-25 °C, 70%): see *ent*-3, Vandewalle, M.; van der Eycken, J.; Oppolzer, W.; Vulliod, C. *Tetrahedron* **1986**, *42*, 4035–4043.

^{*a*} MeOH, H₂SO₄, Δ . ^{*b*} DIBAL, -78 °C, toluene. ^{*c*} (*R*)- α -Methylbenzylamine, KCN, H₂O, MeOH, NaHSO₃, 0-25 °C.

H₂SO₄, reflux) followed by reduction (DIBAL, -78 °C, toluene) gave aldehyde (±)-6⁹ (58%, two steps). Application of Inaba's modified Strecker synthesis¹² with (±)-6 and (*R*)-α-methylbenzylamine (KCN, NaHSO₃, aqueous MeOH) gave a 93% yield of optically active aminonitriles **7a**-**d** which were separated by HPLC (isolated ratios 44:25:17: 14, respectively) to provide the major isomer **7a** in ~40% yield.¹³ From the isolated ratios of **7a**-**d**, we conclude that

diastereoselectivity, with respect to generation of the new stereogenic center C-2, is $\sim 1-1.7$ to 1:2.6 and is significantly influenced by the bulky CCl₃ group at C-4.

We and others¹⁴ have shown that the CCl₃ group in trichloroleucine natural products can be dechlorinated easily to either a CH₃ group (Zn, AcOH) or a CD₃ group (Zn, AcOD). Thus, the formal 1,4-addition of "CCl₃⁻ anion" provides a convenient and inexpensive alternative to 1,4-addition of d_3 -Me Grignard reagents for synthesis of trideuteriomethyl-labeled compounds that are useful for isotopic labeling studies in trichloroleucine biosynthesis. Progress in this area in the latter and synthesis of (-)-1 will be reported in due course.

Acknowledgment. This work was funded in part by the California Sea Grant College Program (R/MP-57A) and office of research, UC Davis.

Supporting Information Available: Preparation, characterization, and configurational assignments of 7a-d. This material is available free of charge via the Internet at http://pubs.acs.org.

OL991256G